Escola Secundéaria de Jaime Moniz

Notas sobre programacé&o VBA em Access 2000

Luis Abreu

Ano Lectivo 2001/2002

indice

Lo (U o= USSP 3
(@01 U] o 10 OO 4
VBA NO ACCESS 2000.......ceiueeeueierieeeteesteeeseesieeseeesseesseesseesseesseaaseesseesnseesseesseesseeas 4
(070110 [0 X0 [1 1103 (o 1S 11
(@01 U1 o 12 17
Os 0bjeCtoS INtHNSECOS A0 ACCESS.......cecvieieciecreerecte st e sieeee st e sre e sreesresaaesreese e 17
(0= o 11 (1] Lo 1 TSP 22
Utilizando os objectos de dados do Access (ActiveX Data Objects)ccu.e... 22
(@0 1 11 Lo 1 SRS 26
TratamMENTO B EITOScc.eiieeeeeeiesiee e eiestee et e et ee s te e e sseesbeeneesreesseensesneensens 26
(0= o 11 (1] Lo - SRR 28

A aplicac8o SUD-MOVIECENLIAL..........ccveieieece e 28

Introducao

O que contém este documento

Este documento tem por principal objectivo ilustrar algumas das capacidades que
Microsoft Access fornece, incidindo sobre aspectos pouco focados ao longo das aulas
préticas (recorde-se que ao longo das aulas foi dado grande énfase ao desenvolvimento
de base de dados utilizando os vérios assistentes fornecidos pela aplicacdo). O principal
objectivo deste documento € introduzir o VBA como meio auxiliar de desenvolvimento
de aplicagdes.

O quenéo deve esperar deste manual

Este documento ndo é de forma alguma uma referéncia completa de todas as fungdes do
Access 2000. Pretende apenas fornecer algumas ideias base que poderdo ser seguidas
aquando da construcdo de uma base de dados. Ao longo do manual séo apresentados
v&rios exemplos préticos que se encontram no Ste da disciplina
(http://www.luisabreu.go.cc/disciplinas/aplicacoes.htm). Para obter uma referéncia
completa sobre todas as fungbes do VBA deve ser consultada aguda on-line que
acompanha o Microsoft Access. Existem também vérios artigos técnicos relacionados
com programacao VB/VBA no ste MSDN da mi crosoft
(http://www.msdn.microsoft.com). Para aém deste site, o http://groups.google.com
fornece um dos mais compl etos newsgroups existentes.

Apesar de terem sido feitos todos os esforcos possiveis no sentido de garantir a absoluta
correccdo deste documento, alerta-se todos os interessados para a consulta regular da
pagina da disciplina a fim de puderem proceder a eventuais actualizagdes do contetido
(http://luisabreu.go.cc/disciplinas/aplicacoes.htm). O cbédigo que acompanha este
manual pode ser retirado do site anterior.

O endereco de mail que serve de suorte a este manual € 0 seguinte
progC@netmadeira.com Também podem utilizar este mail para colocar eventuais
duvidas relacionadas com o codigo apresentado.

Capitulo 1

VBA no Access 2000

O Access suporta 0 VBA desde a versdo Access 95. O VBA, também conhecido por
Visual Basic for Applications’, é uma linguagem de programacso, baseada em
objectos?, que pode ser utilizada pelos varios componentes (programas) do Microsoft
Office.

O objectivo desta seccdo € apresentar, de uma forma bastante rgpida, algumas das
caracteristicas do VBA.

Utilizacdo de médulos

A programacdo VBA em Access € sempre feita em modulos. Existem trés tipos de
maédulos®;
tipo formulario;
tipo relatério;
tipo stadalone (que passaremos a designar por moédulos e possuem um
separador proprio no Access que é designado de...Modulos).

Todo o codigo VBA tem obrigatoriamente de estar contido num destes médulos. As
fungbes relacionadas com os formularios devem ser escritas nos moédulos tipo
formul&rio (cada formulério criado no Access dispde sempre de um modulo tipo
formulério associado); por sua vez, todo o cbdigo relativo aos relatorios deve ser
armazenado num moédulo do tipo relatorio (cada formul&rio possui sempre, a
semelhanca dos formularios, de um médulo tipo relatério associado); por outro lado, o
codigo genérico (ndo relacionado directamente com um formulério ou relatério) deve
ser sempre escrito em maédulos tipo standalone.

Modulostipo formulério

Para exemplificar os varios tipos de modulos, vamos apresentar alguns exemplos
simples. Antes de comecar a escrever cddigo num formulério, é necessario ter em
atencdo as diferencas existentes no modo de visionamento de um formulario:

modo de desenho;

modo datagrid;

L A versdo actual do VBA (6) coincide com a versdo 6 do Visual Basic. A Microsoft propds-se a manter
ambas as linguagens sincroni zadas.

2 A opinido do autor deste documento diverge da grande maioria dos restantes autores. Muitas vezes o
Access é apresentado como sendo uma linguagem orientada a objectos. Isto ndo corresponde a realidade!
O paradigma da orientagcdo a objectos permite a criagdo de classes (grupo de objectos com as mesmas
caracteristicas), a utilizagdo de técnicas como o polimorfismo, encapsulamento, etc. Tal ndo é possivel em
VBA (é praticamente impossivel criar classes em VB!). Exemplos de linguagens orientadas a objectos:
C++ (oraail estd umalinguagem do agrado do autor), Java, C#, etc.

3 Estes termos s&o da autoria do autor, ndo sendo por isso designacdes exactas.

modo formulério.

Um formul&rio visto em modo datagrid ou modo formulério contém codigo a ser
executado (ou que pode vir a ser executado aguando do acontecimento de determinados
eventos). Por sua vez, no modo de desenho, o codigo associado a um formulério nunca
€ executado.

Vamos agora proceder a criacdo de um formulério, com um Unico botdo, que ao ser
clicado apresenta a mensagem “ Ol Mundo!”*:

1. criar um novo formul&rio na vista de desenho;

2. adicionar um novo botédo ao formul&rio;

3. clicar com o bot&o direito sobre o bot&o adicionado e mudar o nome (tab other,
opcao name) do controlo para button e o seu label (tab Format, opcdo caption)
para“Click on me!”;

4. os botBes tem varios eventos. Neste caso queremos responder ap evento de
onclick. Paratal, basta seleccionar o botéo, e nas propriedades seleccionar o tab
Event. No evento onclick seleccionar [Event Procedure] e clicar no botéo ... a
sua direita. Deparamo-nos entdo com o editor de codigo VBA.

5. acrescentar a instrucdo msgbox “Hello World!”;

6. paratestar, basta por o formulario em modo de formulério e clicar sobre o botédo

Bem, vamos analisar um pouco melhor o que foi feito. Assim, o primeira aspecto a ter
em atencdo reside no facto dos botdes terem uma caption (texto que € apresentado ao
utilizador que se encontra escrito no bot&do) e um nome (id que serve para identificar o
botdo no formulério). Alids refira-se que todos os elementos que constituem um
formulario (designados de objectos ou controlos) tém sempre um nome, servindo esse
nome para identificar o controlo no formulério (€ através desse nome que podemos
mudar as propriedades de um determinado controlo do formulario utilizando VBA).
Convém também analisarmos um pouco melhor a janela do editor do VBA (o chamado
IDE):

* Este exemplo encontra-se nos ficheiros de cédigo com o nome de capl_1.mdb nos ficheiros que
acompanham este manual.

Elementao aActual Evento

£ Microsoft ¥isual Basic - capl - [Form_Form1 {Code}] = IEllil
) Fle Edt Vew Insert Debug Run Tools Add-Ins ‘Window Help Type a question for help = 2 @ X

Bla-HB iE2a2da oo) @ s Y2 B e .

[| [g
B . : =

Option Compare Database -
E@ capl (capl1) —

EI@ Microsoft Access Class Objects Private Sub Ctl button Clickl)
= Form_Formi MsgBox "Hello World!'™

End Sub
Properties x|
Alphabetic |Categ0rized |

Codigo VEAR
=Pl | i

Conforme € possivel ver na figura, o IDE esta dividido em \érias zonas. Por cima do
codigo temos uma zona importante que contém duas caixas de combinagdo: a primeira
contém o nome do controlo actual; a segunda contém o nome do evento seleccionado.
Ambos estes parametros sdo controlados pela posicdo do cursor na pagina. Também
servem para navegarmos rapidamente para a fungdo pretendida, ou até mesmo
acrescentar uma nova fungéo.

Até agora temos falado de funcdes e eventos, dando até a ideia de que s6 podemos ter
fungbes que servem para processar eventos. Contudo podemos ter funcdes
independentes, que sdo evocadas por determinados eventos (mais informacdo nas
proximas paginas).

Outro conceito que tem sido referido constantemente, e que importa aprofundar um
pouco mais, € o de evento. O evento assume um papel muito importante na
programacdo em VBA. Pode-se mesmo dizer que a programacdo em VBA é event-
driven, ou sgja, todas as acgdes desempenhadas propagam se sob a forma de eventos,
podendo ent&o o programador processar o evento (processar ndo é mais do que associar
um conjunto de instrucdes a um determinado evento). Os eventos existentes sGo muitos,
e podem ser despol etados por um controlo existente num formulario, ou até mesmo pelo
proprio formulério (por exemplo, quando um formulario é aberto, é disparado o evento
onload). Como vimos (através do exemplo anterior) uma das formas que temos de
processar eventos € através das opcdes propriedades (a que podemos aceder,
seleccionando um controlo e clicando com o botéo direito sobre este).

A programacdo em modulo tipo relatorio é praticamente idéntica a do tipo
formulario, pelo que ndo vamos efectuar qualquer tipo de referéncia especifica a
esse tipo de madulo.

Chama-se ainda a atencdo do utilizador para um exame cuidado do ficheiro
capl 2.mdb, onde € apresentado cddigo um pouco mais complexo (modulo tipo
formulério).

M ddulos tipo standalone

Todo o cadigo independente deve ser escrito na secgdo dos modulos tipo standalone. E
recomendavel o agupamento de fungdes relacionadas num mesmo maodulo. Podemos
definir vérios médulos, que estdo sempre disponiveis para serem utilizados em qualquer

lugar da aplicacéo.

Declaracdo de variaveis

A medida que a complexidade aumenta, torna-se necessario armazenar informacao de
forma temporé&ria; nestes casos podemos recorrer as variaveis. A criacdo de variaveis
pressupde trés questdes importantes:

tempo de vida da variavel;

nome da variavel;

tipo da variavel.

O tempo de vida da variavel € designado de scope. Para além do scope, uma variavel é
sempre caracterizada pela visibilidade. As varidveis podem ser locais (no interior de
funcbes ou do modulo) ou globais (disponiveis em qualquer local da aplicacdo). As
variaveis globais sd0 sempre declaradas nos médulos®, tendo apenas a particul aridade de
serem declaradas com uma visibilidade publica (utilizando portanto o qualificador
Public). A declaracdo de variavels segue a seguinte sintaxe:

visibilidade nome_variavel Astipo_variavel

Exemplos de variavels.
Private varl As String
Public var2 As Integer

A visibilidade pode ser de dois tipos:
publica (Public);
privada(Private ou Dim).

A declaracdo de variaveis publicas apenas tem efeito a nivel de variaveis declaradas a
nivel global nos vérios médulos®. Se uma variavel for declarada como publica num
modulo, entdo é possivel aceder ao seu valor (leitura ou escrita) a partir de qualquer
funcdo (o ficheiro capl_3.mdb apresenta exemplo da utilizagcdo de uma variavel local ao
modulo do formulario - esta varidvel passava a ser global se tivesse sido declarada como
Public).

® A partir de agora o termo médulo passa a designar os médulos do tipo standalone. Se uma variavel for
declarada globalmente no mddulo de um formulario, entdo é necessério referencia-la antes de a puder
utilizar (informacdes adicionais na parte de programagéo de objectos).

® Umavez que uma variavel declarada no interior de uma func&o s existe quando afuncao for executada,
entdo ndo ha qual quer vantagem em declarar umavaridvel como publica no interior de uma fungao.

Falta apenas referir uma Ultima opgéo que € possivel aplicar a declaragéo de variaveis:
Static. O qualificador Static pode ser aplicado a variaveis no interior de fungoes,
fazendo com que as varidveis se portem como variaveis declaradas a nivel do médulo.
Contudo s6 podem ser acedidas no interior da funcdo’. Exemplo:

Static usr as String

Declaracéo de fungbes

Uma funcé@o ndo é mais do que um conjunto de instrugdes que estdo agrupadas sob um
nome, bastando apenas evocar o nome da funcéo para executar todas essas instrucoes.
Existem dois tipos principais de fungdes:

procedimentos. assim designados por ndo retornarem qualquer valor;

funcdes. retornam sempre um resultado.

Os procedimentos sdo sempre declarados utilizado a seguinte sintaxe:
Public Sub Nome_Procedimento(parametros)

“mais codigo
End Sub

Por sua vez as funcfes seguem a seguinte sintaxe
Public Function Nome_Func&o (par@metros) As Tipo_Valor_Retorno

‘ mais codigo
End Function

Ja agora chamase a atencdo para o facto de os comentarios serem feitos em VB
utilizando o simbolo * .

Repare-se que a visibilidade de um funcéo (se sO esta disponivel no médulo, ou entdo,
se se encontra disponivel em toda a aplicacdo) é também ela qualificada pelos dois
termos Public e Private (portanto, de forma semelhante as variaveis). A qualificacdo dos
procedimentos e das funcBes ndo é obrigatéria, sendo que quando ndo € utilizado
nenhum qualificador, o qualificador Public & automaticamente atribuido ao
procedimento. Também é possivel atribuir o qualificador Static a um procedimento ou
funcdo. A qualificagdo de uma funcdo (ou um procedimento) de static converte
automaticamente todas as variaveis em variavel's estaticas.

Utilizagdo de par ametros

" Para melhor percebe-se o funcionamento das variaveis estéticas (static) ha que perceber o que acontece
normalmente a uma varidavel. Quando uma varidvel é declarada no inicio de uma funcdo, essa variavel
existe até ao fim da funcdo (até chegar ao End Sub ou End Function). Ao chegar ao fim da funcédo, a
memoria € libertada, e o eventual valor que a variavel continha é perdido. Por sua vez, as variaveis
estéticas ndo sdo destruidas guando se chega ao fim da fung@o. Da proxima vez que a fungdo for
executada, avaridvel estética contém o valor que tinhano fim da Gltima execug&o da fungao.

Por vezes € necessario passar valores externos para 0 interior dos
procedimentos/funcdes. Se ndo existissem parametros, teriamos de recorrer sempre a
varidveis globais como forma de passar valores para o0 interior dos
procedimentos/funcdes.

A utilizagdo de parémetros é bastante simples. basta introduzir o nome seguido do tipo
do pardmetro. Podemos até considerar os parametros como sendo variaveis que sdo
automaticamente inicializadas aquando da execucdo da funcéo.

Sub Teste(par as Integer)
* 0s parametros podem ser utilizados como variaveis no interior das
‘ funcdes
par =par+1

End Sub

Se por acaso houvesse mais parametros, teriamos de introduzi-1os da mesma forma que
0 pardmetro par, utilizando a, para separa-10s. Se por acaso for necessario passar para a
linha de baixo, temos de indicar esse facto utilizando paratal o caracter _. Exemplo:
Sub Teste(par asInteger,
par2 as Integer)

End Sub

Par ametros Opcionais

Também € possivel termos parametro opcionais. Os parametros opcionais sdo sempre
declarados no fim da lista de par@metro de uma fungdo. Para tornar um parémetro de
opcional, basta apenas declaré-1o como sendo do tipo Variant. Para ver se 0 parametro
foi introduzido basta utilizar a funcéo IsMissing()®.

Function Salutation(strFirst as String, strLast as String,
Optional varSalutation as Variant) as String

If IsMssing(varSal utation) Then

Salutation = strFirst & " " & strlLast
El se

Salutation = varSalutation & " " & strFirst & " " & StrlLast
End | f

End Function
O simbolo & é responsavel por efectuar a concatenacdo das duas strings. Também é

possivel passar n parametros opcionais. Para tal temos de qualificar a variavel de
ParamArray.

Public Function Concat (ParamArray avarArray() as Variant) as String

End Function

8 Repare-se na diferenca de processos para evocar uma subrotina: no caso dos procedimentos, basta
escrever 0 nome da subrotina (ex: soma a, b—procedimento soma com dois parametros); no caso das
fungdes, temos de introduzir paréntesis (ex: ¢ =soma(a, b)).

Parametros por referéncia e parametros por valor

O que acontece quando modificamos o valor de um parametro no interior de uma
funcdo (ou de um procedimento)? A resposta € um pouco mais complicada do que
parece a primeiravista.

Suponhamos o seguinte exemplo:

Sub What sMyVal ue()
DimintX as integer

intX = 10

Squarelt(intX)

MsgBox i nt X
End Sub
Sub Squarelt(intSquare as |nteger)

i nt Square = i ntSquare * intSquare
End Sub

Como podemos ver, 0 parametro € inicializado com a variavel. Qual o valor da variavel
apos a execucdo da funcdo Squarelnt (recorde-se que o valor do pardmetro mudou
dentro da funcdo)? Neste caso o0 vaor da varidvel X ndo é alterado de 10 para 100
(ficheiro capl 4.mdb). De facto, os parametros sdo passados (por defeito) por valor
(estamos a falar dos tipos primitivos do access, como por exemplo o integer; no caso
dos objectos, a passagem é feita por referéncia). Existe uma outra opcéo (por referéncia)
caso em gue os parametros trabal ham directamente sobre o valor. Podemos especificar o
tipo de pardmetro através de dois termos reservados.

ByRef: parametro por referéncia;

ByVal: parametro por valor.

Exemplo da utilizag&o destes qualificadores:

Sub Test(ByRef parl as String, ByVal par2 as String)
End Sub

Como jafoi dito, os parametros por referéncia trabalham directamente sobre o valor de
umavaridvel. Dai que tenhamos que ter o cuidado de ao evocar a fungdo, ter em atencéo
gue um parametro por referéncia tem de estar sempre relacionado com uma variavel (-
value) e nunca com um valor constante (r-value). O exemplo seguinte tenta evocar o
procedimento apresentado no parégrafo anterior:

Dim var as String

‘codigo....

‘exemplo da correcta utilizag&o

Test var, “String 2°

‘forma incorrecta
Test “Stringl”, “String2”

Em relagcdo aos pardmetros por valor ndo ha qualquer tipo de preocupacdo, pois
podemos passar uma variavel ou um valor constante®. Contudo 0 mesmo j& ndo
acontece em relagdo aos parametros por referéncia.

Controlo de fluxo

Tal como em todas as linguagens de ato nivel, existem dois tipos de estruturas de
controlo de fluxo:

estruturas de decisdo: permitem tomar decisdes;
estruturas de repeticdo: permitem repetir um conjunto de instrugdes.

Os principais dois tipos de estrutura de decisdo sdo o if e o select. Tém a seguinte
sntaxe (uma vez que o0s aunos inscritos estdo matriculados em TLP, apenas
apresentamos a sintaxe sem indicar quaisquer exemplos da utilizagdo deste tipo de
estruturas, pois é apenas esta (sintaxe) a diferenca existente entre as estruturas de
controlo de fluxo do VBA e asdo C ou do Pascdl) :

If condicéo then

Bloco de intruces
Else

Bloco de instrucdes
End If

Sel ect Case condi ¢cdo
Case valorl
Process valorl
Case val or2
Process val or2
Case El se
Al'l ot her days.
End Sel ect

Por sua vez, existem trés tipos e estruturas de repeticdo: do...loop, for....next e for
each...next. A sintaxe de cada um das estruturas € a seguinte:

Do While | Until condition
statenents
Exit Do
statenents

Loop

Do
statements
Exit Do
statements
Loop Wiile | Until condition

For intLoop = 1 To 10 [Step 1]

9 Neste caso estamos afalar dos chamados r-val ues, que s&o val ores constantes e ndo de constantes
definidas pelo utilizador. Exemplos de r-values: 10 (exemplo de um inteiro), “test” (exemplo de uma
string), etc.

" Run Code
Next i ntLoop

Existe uma diferenca entre o Do While e 0 Do Until. O Do While executa um conjunto
de instrugdes enquanto a condicdo for verdadeira; por sua vez o Do Until executa um
conjunto de instrucdes até que a condicdo sgja verdadeira. O ciclo for contém uma parte
opcional: step. Se for omitida, entdo € equivalente a instrucdo step 1. O step serve para
controlar o incremento da variavel que controla a execucdo das instrucbes que se
encontram no interior do ciclo.

Objectos existentes

Como jafoi referido, a programacdo VBA € baseada em objectos. Praticamente tudo é
um objecto. Os objectos tém propriedades e métodos que sdo expostos (publicos). O
Object Browser permite ver as propriedades/métodos expostos por um objecto. Para
aceder ao object browser, basta carregar natecla F2 no IDE do VBA.

Se for necess&rio, podemos recorrer a objectos exteriores. Por exemplo, pode ser
necessario integrar 0 word numa base de dados, utilizando para @nstruir relatorios
escritos. Para tal basta indicarmos a0 Access que desgiamos utilizar esse(s) objecto(s)
através da opgdo Referéncias no menu Ferramentas do IDE de VBA.

Ml References - capl_4
)

x|t
fvailable References:

Wisual Basic For Applications il Cancel |
Microsaft Access 10,0 Objeck Library
OLE Automation

W Il i osoft Actives: Data Objects 2.1 Library Browse. .., |

“ | 185 Helper COM Component 1.0 Type Library I
[] 145 RADIUS Protocal 1.0 Type Library ﬂ

" | acrobat
[] serobat Distiller Priority

1 |[]acroIEHelper 1.0 Type Library Help |
[Active DS 115 Extensian Dl ﬂ

[] Active DS 115 Namespace Provider
[] Active 05 Type Library

[dctive Setup Cantral Library
ﬂlActiveMDvie conkraol tvnT library _ILI
4 3

—Microsoft Activex Data Objects 2.1 Library

Location: EiPragram FilesiCammaon FilesiSystemtadaimsadoz1 tHb

Language; Standard

Programacéo com objectos

Apesar de ja termos utilizado objectos nalguns dos exemplos apresentados até agora,
ainda ndo tinhamos dedicado especia atencdo a sua utilizagdo. Estd na hora de
colmatarmos essa lacuna.

Ostermos Public e Private (revisitados)

Como vimos, as variaveis podem ser publicas ou privadas. Também foi visto que as
variaveis publicas que se encontram definidas num maodulo sdo variaveis globais. Se
declararmos uma varidvel global num modulo standalone, entdo para acedermos a essa
variavel temos apenas de escrever o nome da variavel. Contudo, se a variavel estiver
contida num formulario ou relatdrio, entdo tem de ser qualificada do nome do
formulario. O ficheiro capl 5.mdb apresenta um exemplo bastante simples sobre este
topico. Convém ainda chamar a atencdo para 0 nome que é utilizado no médulo para
identificar o formulério. Apesar do formulério ter sido identificado de testes, o seu id é
form_testes (isto esté relacionado com o facto de estarmos a trabalhar com a classe do
formul&io; mais informagOes sobre isto a frente). Por isso é que foi utilizado
form_testes no codigo existente no modulo.

As propriedades de um objecto

Para se aceder as propriedades de um objecto basta fazer o seguinte:
Nome_objecto.propriedade

Por exemplo, se tivermos uma edit box com o nome de edit, entdo podemos aceder a
propriedade value da seguinte maneira: edit.Value. Existem algumas propriedades que
sd0 sO de leitura, outras de escrita e ainda outras que suportam ambas as operacoes.
Muitos objectos fornecem uma propriedade por defeito. Nesse caso ndo € necessario
indicar a propriedade. Por exemplo, as edit boxes apresentam o Vaue como propriedade
por defeito. Por isso podemos utilizar (aproveitando o exemplo anterior) edit como
sinénimo de edit.Vaue. Todos os objectos tém uma propriedade por defeito (ou melhor,
guase todos, uma vez que isso depende da maneira como o objecto foi implementado).

Existe uma forma de aceder a varias propriedades de um objecto em simulténeo. Para
tal utilizanos o With. Exemplo (supondo que temos uma edit box com o nome de

textl):
Wth textl
. Backcolor = 0
.Wdth = 200
. Hei ght = 400
End Wth

Os métodos de um objecto

Da mesma forma que podemos aceder as propriedades de um objecto, também é

possivel aceder aos métodos de um objecto. Um método € uma subrotina publica, e por

isso é semelhante a uma fungdo ou procedimento. A Unica diferenca reside no facto de

termos de qualificar o nome do método pelo nome do objecto. Exemplo:
Objecto.metodo

Mais uma vez € necessario ter em atencdo que as fungdes tém obrigatoriamente de ser
evocadas utilizando paréntesis, enquanto que os procedimentos ndo devem ser evocados
com paréntesis. Os exemplos seguintes ilustram a diferenca:

Object.metodo ‘ procedimento

Object.metodo() ‘funcdo

Também é possivel evocar métodos de objectos com pardmetros (alids como era de
esperar!). O exemplo seguinte mostra como (para funcdes e para procedimentos):
Object.metodo(10, 20) ‘funcéo
Object.metodo 10, 20 ‘procedimento

Passando valores a par ametros pelo nome

Geralmente os valores s80 passados aos parametros pelo posicdo em gue sdo colocados
na evocacdo da funcao/procedimento. Contudo, podemos utilizar outra técnica que
consiste em passar 0s parametros pelo nome. A sintaxe € a seguinte:

Obj ect . Met od Par amet er 1: =expr essi on, _
Par amet er 2: =expr essi on, ... Par anet er n: =expr essi on

Podemos utilizar os parametros com nome numa situacdo em que temos parametros
opcionais e ndo queremos ter o trabalho de andar a escrever virgulas. Por exemplo,
suponhamos que temos uma fun¢do com cinco par@metros, e que sd queremos passar
valores para o primeiro e para o Ultimo parametro. Neste caso a utilizacgo de parametros
por nome facilita e gjuda a melhor documentar o cédigo.

Atribuicéo de objectos a variaveis

Normamente, quando atribuimos uma variavel a outra estamos a copia-la (portanto, o

comportamento € semelhante ao que acontece na passagem de parametros por valor).
DimintX as integer
DimintY as integer

intX = 10
intY = intX
intX = 20
MsgBox intY

No exemplo anterior, apds efectuarmos a atribuicdo do intX ao intY, um modificacdo no
intX ndo afecta a varidvel intY. Isto porgue intY apenas foi inicializada com uma cépia
do valor de intX. Contudo, e se for necessario, também podemos ter referéncias, ou sgja,
variaveis que se tém um comportamento semelhante a passagem de parametros [or
referéncia. Por exemplo:

Di mtxt Nanme as TextBox ‘controlo de umform

Me! User Nanme "Bill"

Set txt Name Me! User Nane ‘control o passa a ser ref para o objecto
‘usernane que existe no form

Me! User Nane = "Joe"
MsgBox txtName

No exemplo anterior a utilizacdo da instrucdo Set torna txtName numa referéncia.

Assim, ambas as varidvels apontam para 0 mesmo endereco de memoéria. Dai que a
mensagem apresentada ao utilizador sgja “Joe”. O ficheiro capl_6.mdb apresenta alguns
exemplos de programacao de objectos. SO mais uma observagao: a utilizacdo do set faz
Se sempre que sgja hecessario utilizar objectos! (como no exemplo anterior)

Colecches

O VBA é rico em colecgdes. Podemos considerar que as coleccbes consistem num
conjunto de objectos relacionados. Por exemplo, uma base de dados contém um
conjunto (coleccdo) de tabelas, que por sua vez contém um conjunto de indices Por
outro lado, existe também um conjunto de consultas, um conjunto de formularios, etc.
Se atentarmos nos formularios, podemos também afirmar que eles sdo constituidos por
um conjunto de control os (editboxes, buttons, checkboxes, etc).

O ficheiro capl_7.mdb mostra como se pode aceder a dgumas das colecgbes existentes
no Access. Suponhamos que apenas queremos imprimir o valor das edit boxes. Como ja
vimos, temos de utilizar a propriedade Vaue. Contudo, o seguinte cddigo ndo é
suficiente:

Dim c as control

For each ¢ in melcontrols
Msgbox c.vadue

Next

Bem, o problema reside no facto de nem todos os controlos terem uma propriedade
chamada value (recorde-se que as labels que acompanham as edit boxes sdo também

controlos). A solugdo mais correcta sera entéo a seguinte:
For Each ctlCurrentin M. Controls
Process the control ctl Current
If ctlCurrent.Control Type = acText Box Then
ctlCurrent.Left = MeltxtLocation
End If
Next

A propriedade controltype permite aferir qual o tipo de controlo actual. Para uma
descriminacdo mais pormenorizada sobre 0s objectos e respectivas propriedades é
aconselhavel a consulta do manual de VBA que acompanha o Access. Ja agora refira-se
que o termo reservado Me refere-se ao objecto actual: neste caso ao formulério.

Criacdo de propriedades num formulario

A maneira mais simples de criar uma propriedade num formuléario consiste em declarar
um varidvel com o qualificador Public. Contudo, existe uma outra maneira que permite
um maior controlo por parte do programador: a definicdo de propriedades utilizando o
get e set. O ficheiro capl 8.mdb apresenta um exemplo da definicdo de uma
propriedade utilizando o get e 0 set. A grande vantagem deste método reside no facto de
ser possivel proceder a verificagOes antes de armazenar a informag&o numa variavel.
Existem vérios tipos de propriedades:

escrita: permitem apenas aleitura, ou sgja, sO define o método get;

leitura: permite apenas a escrita, ou sgja, sO define 0 método set;

leitura/escrita: permite quer a leitura quer a escrita (portanto definem métodos

St e get).

Qual o préximo passo?

Bem, este capitulo serviu para termos algumas ideias sobre as potenciaidades do

Access. Serviu também para apresentar as principais caracteristicas da sua linguagem de

programacdo VBA. Ficdmos a conhecer varios aspectos importantes que recordamos

aqui:
- variavels,

qualificadores,

métodos;

tipos de médulos;

estruturas de controlo de fluxo;

métodos;

parametros,

controlos;

propriedades.

O proximo capitulo (Objectos do Access) parte dos aspectos bésicos deste capitulo e
apresenta, de uma forma mais ou menos detalhada, os objectos existentes no Access.

Capitulo 2

Os objectos intrinsecos do Access

O capitulo anterior introduziu as bases necessarias a compreensdo das colecgoes. Na
atura, apresentamos uma colec¢do como sendo um conjunto de objectos do mesmo tipo.
Também afirmémos que o Access € muito rico em colecgdes. Como exemplo, chegdmos
afalar dos vérios tipos de coleccbes que Access possui: tabelas, consultas, formulérios,
etc. Vamos comegar por falar na criacéo de colecces.

Coleccdes definidas pelo programador

E possivel criarmos a nossa propria colecgdo utilizando o VBA. Antes de explicarmos
como, conveém apontar alguns aspectos que nos levem a criar a nossa propria colecgao.
No capitulo 1 ndo chegamos a mencionar a existéncia de um tipo fundamental de dados:
o Array!

O array permite guardar um conjunto de valores do mesmo tipo, sob o nome de uma
variavel. O exemplo seguinte ilustra um array de 10 inteiros:

Dim arr (10) as integer
Dim i asinteger
‘preencher o array através dum ciclo
fori= 1to10
arr(i) =i
next

Para definir um array é sempre necessario introduzirmos o nimero de elementos que o
array comporta. Esta é a grande desvantagem que reside na utilizacdo dos arrays! Por
sua vez, uma coleccdo ndo necessita de, a partida, saber quantos elementos va
armazenar. Dai que, nos casos em gque ndo sabemos quantos elementos queremos
armazenar, sgja vantajoso utilizar colecgoes.

Como criar coleccdes e manipula-las
Para criar uma colecgdo temos apenas de escrever 0 seguinte:

Dim col1 as collection
Ou
Dim col2 as new collection

A segundainstrucéo é a preferivel pois cria um novo objecto do tipo collection (sim, até
as colecgOes sao objectos em VBAI!). A primeira apenas define uma varidvel, ndo
chegando a criar 0 objecto em si. Antes de utilizarmos a col1 temos de criar o objecto.
Para tal temos duas hipoteses:

utilizamos o new;
utilizamos uma referéncia para uma coleccdo que ja exista (utilizando o termo
reservado set, tal como foi feito no capitulo anterior).

Exemplo:

‘criar nova coleccéo
If coll Is Nothing Then Set coll = New Collection

‘utilizar referéncia para uma coleccao ja existente - por exemplo col2
set coll = col2

O ficheiro cap2 1.mdb apresenta um conjunto de exemplos que ilustram o
manuseamento de arrays e de coleccdes (com particular énfase nas coleccoes).
O modelo de objectosdo Access

O modelo de objectos do Access € um modelo hierdrquico, cujo objecto de topo se
chama Application. A figura seguinte ilustra o0 modelo de objectos existente no Access.

Application

Modules DoCmd CurrentProject
Modula Screen &llForms +
References VEE Ll AllMacros +
Reference DefaultWebOptions AllModules +
DatahAccessPages Assistant * AccessObjectProperties
DatahccessPage CommandBars * AccessObjectProparty
WebOptions DBEngine AllReports +
Reports FileSearch * AllDatafccessPages T
Report COMAddIns * CurrentData
Modula AnswerWizard * AllFunctions
Controls LanguageSettings AccessObject
Control AllStoredProcedures
Properties Repeated Objects AllDatabaseDlagrams *
Control AcoessObject AllTables T
Printer AccessObjectProperties AllQueries +
Proparties AccessObjectPropearty AllViews +
Form CodeProject
Forms AllForms +
Form AllMacros +
Controls AllMadules i+
Control AccessObjectProperties
Properties AccessObjectProperty
Control AllReports +
Module AllDataAccessPages ©
Printer CodeData
Properties AllFunctions
Form AccessObject
Printers AllStoredProcedures +
Printer AllDatabaseDiagrams T
AllTables +
AllQueries +
AllViews +

O objecto Application

O objecto Application suporta varios métodos, propriedades e coleccdes que permitem
efectuar. Por exemplo, se quisermos sair da aplicacdo podemos utilizar o método quit.
Este método aceita um parémetro opciona gque permite especificar como proceder em
relacdo a eventuais operacGes que ndo tenham sido gravadas. As hiplteses sdo as
seguintes:

acPrompt;

acSave,

acExit.

Exemplo da utilizagdo do método: Application.Quit acPrompt

O Access 2000 apresenta dois novos objectos que permitem um fécil acesso as
coleccBes intrinsecas do Access: Tabelas, Consultas, Relatérios, etc. O objecto
CurrentData permite aceder as seguinte colecgdes:

AllTables;

AllQueries;

AllViews,

Etc.

Por sua vez, o objecto CurrentProject apresenta as seguintes coleccoes:
AllForms;
AllReports;
AllMacros,
AllModules;

Estes objectos apresentam ainda mais alguma coleccdes que ndo iremos referir. Para
mais informagBes deve ser consultado o manual do Access. Estas colecgBes contém
objectos do tipo AccessObject, que apresenta as seguintes caracteristicas:
- Name: nome do objecto como aparece na janela da base de dados;

FullName: caminho completo para a pagina de acesso de dados;

IsLoaded: indica se objecto esta ou ndo aberto;

Type: indica o tipo do objecto (retorna uma constante do tipo acObjectType);

Properties: coleccdo de propriedades definidas para objecto em questdo (apenas

aplicivel a objectos obtidos a partir das coleccdes do CurrentProject).

O fichelro cap2 2zmdb ilustra quais os objectos que existem na base de dados
seleccionada.
O objecto CurrentProject apresenta também algumas propriedades Uteis. Exemplo:
FullName : caminho completo para o ficheiro de base de dados,
Name : nome da base de dados (sem o caminho até ao ficheiro);
Path : caminho da base de dados (sem o nome do ficheiro).

Coleccao dos formulérios e dos relatorios

No capitulo anterior ja foram dados alguns exemplos da utilizacdo de formularios (a
utilizacéo de relatorios € muito semelhante).

Quando escrevemos codigo num médulo do tipo formulario (ou do tipo relatério)
podemos utilizar o termo reservado Me para nos referirmos ao proprio formul&rio (
contudo, se quisermos, podemos omitir pois este € assumido por defeito). Quando
estamos a escrever codigo num formulério, e nos queremos referir a outro formuléario,
temos de qualificar o nome do outro formulério de forma conveniente. Por exemplo:
Forms!Form1.Caption = “MyCaption”

Neste caso temos de ter a certeza de que o formulério est4 aberto antes de utilizarmos a
instrucdo anterior. A funcdo seguintes mostra como podiamos utilizar a referéncia de
uma forma segura:

Private Sub cnmdMyButton_Click()

On Error GoTo Err_cmdMyButton_Click

For ms! f r nExanpl e. Capti on = " MFornt

Exit_cmdMyButton_Cli ck:
Exit Sub

Err_cmdMyButton_Click:

If Err = 2450 Then ' Form not open
DoCnd. OpenFor m " f r nExanpl e"
Resune
El se
MsgBox "Error: " & Err.Description
Resume Exit_cndMyButton_Click
End | f
End Sub
A rotina anterior introduz o chamado “error handling”, ou seja o

lugar, proceder & abertura do fornuléario através da instrucgéo
DoCmd. OpenForm “frmExanpl e". A instrucdo resune serve para tratanento
do erro. A prineira instrucdo informa o procedinento que em caso de
erro deve prosseguir para a linha com a |abel Err_cnmdMButton_ Click.
Essa |inha verifica em prineiro lugar o cédigo do erro (utilizando
para tal o djecto Err do VBA). Neste caso, se o erro for o 2450,
entdo tenops de, emprineiro indicar ao Access que apds o processanento
da rotina de erro deve ser retomado o cdOdigo responsavel pelo erro (ou
seja, deve ser retonmda a execucdo do programa na |linha que originou o
erro). Por sua vez a nensagem Resune Exit_cnmdMButton_Click serve para
i ndi ca que o Access deve r et omar o} caodi go na i nha
Exit_cmdMyButton_Cli ck.

Poderiamos também verificar se o formulario ja esta carregado antes de utilizarmos a
referéncia

Function ap_Form sOpen(strFornmNanme As String) As Bool ean

ap_Form sOpen = _
Application. Current Project. All Forns(strForm\ane). | sLoaded

End Function

Em vez de utilizarmos a colecgcdo dos formulérios para acedermos a um formulério,
podemos referirmo-nos a classe do formulério (alias, foi esta a estratégia que utilizamos
no capitulo anterior). Se tivermos um formulario chamado de Forml, temos de nos
referir a esse formulario como Form Forml1.Caption = “My Caption” (efira-se que
neste caso as alteracfes sdo aplicadas a todos os formulérios que venham a ser abertos).

Capitulo 3

Utilizando os objectos de dados do Access (ActiveX Data Objects)

O principal objectivo deste capitulo é introduzir o ADO (ActiveX Data Objects). Estes
objectos vieram substituir o DAO (Data Access Objects) como meio preferencial de
aceder a base de dados por forma a inserir, eliminar e modificar informag&o.
Actuamente o Access suporta ambas as tecnologias. Contudo, a partir da versdo 2000 a
Microsoft encore}ja a utilizagcdo do ADO como meio de acesso aos dados armazenados
na base de dados™.

O ADO é o método standard para aceder a base de dados. Comegou por ser utilizado
pelos programadores de VB para acederem a base de dados, uma vez que ndo
conseguiam utilizar o OLE DB para esse efeito.

Modelos de objectosdo ADO

A tecnologia ADO suporta varios modelos*! de objectos, que se subdividem em:
- ActiveX Data Objects (ADODB) que permite a criagdo de recordsets e o
processamento de erros;
ADO Extensions (ADOX), que permite modificar a estrutura da base de dados (
anivel da criacdo/modificacéo de tabelas
Jet and Replication Objects (JRO), que permite trabahar com o motor da base
de dados (JET) e com areplicacdo da base de dados.

Este modelos de objectos encontram-se, apesar de separados, relacionados. Iremos
apenas estudar o modelo ADODB, utilizado na manipulacdo da informagdo que se
encontra armazenada na base de dados.

100 DAO possui 0 seu préprio modelo para aceder &informagao. Aconselha-se osinteressados em
?Prenderem autilizar o DAQO pararecorrerem ao manual do VBA.

Defacto, ao contrério do DA O, que apenas apresenta um modelo, 0 ADO apresenta vérios model os de
objectos independentes.

O modelo ADODB

A figura seguinte tenta mostrar 0s principais objectos que compdem o modelo de
objectos ADODB:

Connection

I Errors || Errar |

|F'r|:|perti85 || Property |

|

Command

i

| Parameters || F‘arameterl
| Properties || Property |

Fecordset

| Fieds || Field |

|F'r|:|perti95 || Property |

Fields || Field |

O abjecto Connection permite efectuar ligacBes a base de dados. O objecto Errors
permite ao utilizador efectuar o tratamento de erros. O objecto Command permite
efectuar ac¢Oes sobre a base de dados (geralmente é utilizado para obter resultados de
consultas, inserir dados, etc). Costuma ser acompanhado de um conjunto de parametros
(coleccdo Parameter, composta, como seria de esperar, por objectos Parameter). O
objecto Recordset, que contém um conjunto de registos devolvidos apés a execucdo de
uma consulta. Antes de comecarmos a utilizar os objectos ADO, ha que informar o
Access que os queremos utilizar. Paratal, temos que incluir uma referéncia aos objectos
ADO2.1 (consulte o capitulo anterior para ver como € que se procede a introducdo de
uma referéncia de objectos).

!

Estabelecendo a ligacéo a base de dados

A partir de agora todos os exemplos apresentados sdo mais completos e, sempre que

possivel, apresentam exemplos de manipulacdo de dados utilizando a programacao.

Bem, sempre que utilizarmos o0 ADO para manipular a informagdo gque se encontra na
base de dados temos, em primeiro lugar, de estabelecer uma ligagcdo a essa base de
dados. AplGs estabelecermos a ligagdo, podemos enviar comandos que irdo ser
processados pelo motor da base de dados.

Para estabelecer a ligacdo (a chamada connection) temos de utilizar o objecto
Connection do ADO. O estabelecimento de uma ligagéo a uma base de dados envolve
sempre a configuracdo da chamada connection string (uma string que serve para
configurar os parametros necessarios a ligagdo: caminho para o ficheiro da base de
dados, utilizador, password, etc.). A situagdo mais utilizada consiste em nos ligarmos a
base de dados actual (ou sgja, estamos a desenvolver um projecto e, geralmente, ligamo-

nos a essa lese de dados para manipularmos a informagdo). Neste caso a seguinte
instrucéo é suficiente para assegurar a correcta configuracdo da ligacéo (ou sgja, para
assegurar a correcta obtengdo do objecto connection):

‘utilizar o namespace ADODB para hos referirnos

‘0 conceito de namespace é um conceito mais avangado

‘que serva para identificar um conjunto de nomes (evitar conflitos)
Dim conLoca as ADODB.Connection

‘utilizar o objecto CurrentProject e a sua propriedade Connection para estabelecer a
‘ligacéo
set conLocal = CurrentProject.Connection

A ligacéo a outra base de dados € um pouco mais complexa e é apresentada apenas para
satisfazer a curiosidade (uma vez que ndo ira ser utilizada ao longo do manual):

Sub Di spl ayAnot her Connecti on()

Di m cnnNet As New ADODB. Connecti on
cnnNet . Open "Provi der=M crosoft. Jet. OLEDB. 4. 0; Dat a
Sour ce=C: \ Books\ Pwr Pr g2000\ AppCD\ Exanpl es\ Vi deoDat . ndb"

cnnNet . Cl ose

End Sub

Repare-se que neste segundo caso foi necessario criar um objecto do tipo pretendido
utilizando para tal a instrucdo NEW (recorde-se que 0s objectos tém que ser sempre
inicializados através do NEW ou do SET). Outro aspecto importante reside no facto de,
no segundo excerto de codigo, ser necessério abrir aligacdo a base de dados.

Apos estabel ecida a ligacdo, é costume procedermos a uma de duas operacoes.
obter dados que se encontram nas tabelas;
inserir/modificar/eliminar dados que se encontrem nas tabel as.

O objecto Recor dset

Para obtermos dados provenientes das tabelas temos de utilizar o objecto Recordset.
Este objecto € responsavel por guardar a informagdo proveniente da execucéo de uma
instrucdo SQL'2. Aqui apenas analisamos o objecto recordset como forma de obter
informagdo; contudo, ele também pode ser utilizado para modificar/acrescentar
informagéo.

O codigo seguinte ilustra como poderiamos obter todas os registos de uma tabela
chamada tbIMoviesTitles:

120 sQL éalinguagem utilizada para acedermos a base de dados. A instrucdo SELECT é responsavel
por seleccionar um conjunto de registos de uma ou mais tabelas que verifiquem uma determinada
condig&o.

Como estamos a ver, 0 codigo é bastante simples! SO temos que seguir a seguinte
sintaxe:
Recordset.Open string_sgl, connection_object, cursor_type, locking_method

A string de sgl é uma string que contém as instrucdes que se pretendem executar sobre a
base de dados. O objecto Connection € necess&rio para assegurar uma ligacdo a base de
dados (s6 apés estabelecida a ligacdo € que podemos executar as instrucoes
pretendidas). O CursorType define a maneira como 0 nosso recordset deve-se portar:

- adOpenKeyset: é possivel actualizar os dados do recordset, ndo sendo contudo
visivels as alteragOes que outros utilizadores podem estar a efectuar;
adOpenStatic: recordset s de leitura (deve ser utilizado em situacbes de
consulta); pode-se navegar em ambos 0s registos;
adOpenForwardOnly: igual ao anterior, com a particularidade de a navegacdo
ser sO num sentido.

O LockingMethod esta relacionada com as medidas de seguranca que devem tomadas
aguando da execucao de determinadas operagOes sobre o recordset. As opcdes possiveis
S80 as seguintes:
adLockOptimistic: tranca 0s recordsets apenas quando sd&o modificados e
gravados;
adLockPessimistic: tranca 0 receordset aquando da edicdo (alteragdo) dos
valores,
apL.ockReadOnly: trancar o recordset.
Existem alguns conselhos Uteis que devem ser seguidos.
para a construcéo das strings SQL devemos utilizar as vistas de consultas. As
consultas ndo sdo mais do que instrucdes SQL. Dai que a maneira mais fécil de
construirmos as consultas passa pela utilizagdo deste editor; em seguida,
mudamos para a vista de sgl e simplesmente copiamos a instrucéo de SQL ;
a melhor opcéo para o Locking method € a adLockOptimistic (uma vez que
apenas vamos utilizar os recordsets para obter informago).
Como vimos, os recordsets obtém dados de uma (ou mais) tabela(s). Assim, é muito
provavel que algumas instrugdes retornem recordsets vazios, ou sga, sem nenhum
registo. Antes de explicarmos como podemos proceder a essa validagdo temos de
introduzir dois novos conceitos. EOF e BOF.
A propriedade EOF (s6 de leitura) retorna true (verdadeiro) se estivermos antes
primeiro registo do recordset; por sua vez, a propriedade BOF retorna true se estivermos
depois do ultimo registo da base de dados. Logo, podemos utilizar a seguinte expressao
para verificarmos se temos um recordset vazio:

If rec.EOF and rec.BOF then
‘ternos um recordset vazio. ..
end if

Por outro lado, se o recordset réo estiver vazio, € 6bvio que podemos querer percorrer
os varios valores do recordset. Para percorremos os valores do recordset podemos
utilizar a seguinte estratégia:

Set cnnLocal = CurrentProject.Connection
“string sql pede todos os valores —dai a utilizacdo do *

‘“em que o canpo Rel easeDate seja igual a 02/01/99 — o Access
‘obriga a utilizacdo do # para especificar a data

rstCurr.Open "Select * fromtbl MovieTitles where Rel easeDate =
#02/ 01/ 99#", cnnLocal, _
adOpenKeyset, adLockPessim stic

Do Until rstCurr. EOF
'-- Print each of the fields
For Each fldCurr In rstCurr. Fields
Debug. Print fldCurr. Val ue
Next

rst Current. MoveNext
Loop

rstCurr.Cl ose

Como podemos ver, € possivel aceder a colecgdo dos campos retornados por um
recordset através da coleccdo Fields, que contém objectos do tipo Field. Como a
propriedade Fields é a propriedade por defeito do objecto recordset, entdo para
acedermos ao campo Nome de um recordset (suponhamos que jé obtivemos o recordset,
e que um dos campos se chama Nome) podemos utilizar qualquer uma das seguinte
linhas:

‘supor que temos um recordset rec

‘e que o recordset jafoi inicializado

rec.Fields.ltem(*Nome”)

ou

rec.ltem(*Nome”)

‘ainda podemos simplificar mais se tivermos em atencdo gque a propriedade Item

‘é apropriedade por defeito do objecto Fields

‘por isso podemos ter ainda o seguinte:

rec(*Nome”)
O ficheiro cap2_3 apresenta uma base de dados com trés formulérios. Um formulério
permite introduzir os dados; outro permite ver os dados existentes; e o terceiro permite
eliminar os dados. Foi utilizada programacéo VBA nos trés casos para mostrar como é
possivel construir uma base de dados recorrendo somente a VBA. Repare-se ainda ha
utilizacdo das regras de validag&o e respectivo texto de validagdo como meio auxiliar de
proceder a verificacdo de certas restricdes (se quiséssemos podiamos ter utilizado
codigo para efectuar esta validacéo).

Capitulo 4

Tratamento de erros

Como é do conhecimento geral, ndo h& nenhum programa que possa considerar-se
imune a erros. Sendo vejamos o exemplo do Windows™: quem é que nunca se deparou
com um dos famosos ecras azuis (BSOD- blue screen of death)?

Quando ocorre um erro, 0 Access mostra-nos uma mensagem de erro. Esta mensagem
geralmente permite-nos efectuar a depuracdo. Isto € bom quando estamos em

13 Sim, o Windows é um sistema operativo. Contudo, um sistema operativo n&o é mais do que um
programa especial, que tem como principal objectivo gerir um computador.

desenvolvimento. Contudo, apds terminada a fase de desenvolvimento, ndo € muito
agradavel utilizar um programa que, perante um erro, mostra uma mensagem destas:

Assim apareceu o error handling™®! O error handling permite-nos efectuar o tratamento
de um erro, fazendo com gque a nossa aplicacdo termine de uma forma controlada Bem,
em muitos casos, até podemos impedir que esta termine, pois € possivel “apanhar o
erro” e continuar a correr o programa. O Access efectua o tratamento de erro através dos
seguintes termos reservados. On Error, Exit e Resume.

A instrugdo On Error indica a instrugdo que o Access deve retomar em caso de erro
(deve ser sempre colocada no inicio de uma funcéo ou procedimento). A instrucdo On
Error costuma ser utilizada com labels. A funcdo seguinte ilustra essa utilizagao:

Sub Test()
‘tratamento de erro deve ser a primeira instrucéo
On Error Goto Erro
....codigo
....codigo
‘sair dafungédo
exit sub
‘tratamento de erro
Erro:
Msghbox err.description
Exit sub
End Sub

Existem alguns aspectos importantes no codigo anterior:
introducéo da label Erro: as labels sdo sempre utilizadas em conjunto com a
instrucdo Goto. Se houver algum erro durante a execucdo do codigo, entdo o
Access automaticamente salta para a primeira instrucéo depois da label indicada
(neste caso, Erro);
repare-se como antes da label erro existe um exit sub. Esta instrucéo obriga a
gue se saia imediatamente da funcdo (semelhante a instrucéo return do C). Deve
ser colocada uma instrucéo antes da label pois caso contrario o codigo relativo
a0 erro iria ser processado (0 que ndo era necessario neste caso, uma vez que nao
ocorreu nenhum erro);
Existem outras alternativas no processamento de erros. Por exemplo o ficheiro
cap4 _1.mdb retorna ao inicio da subrotina sempre que verifica um determinado erro.
Neste exemplo é pedido um numero, e em seguida tenta-se dividir 100 pelo nimero
introduzido pelo utilizado. SO uma coisa pode correr mal: introduzir o nimero 0. A
solugdo encontrada neste caso passa por voltar ao inicio da rotina e pedir um novo
ndmero ao utilizador.
Existem outras variagdes do on error que também costumam ser utilizadas. Temos o on
error resume next, por exemplo. Esta instrucdo obriga 0 Access a retomar a instrucéo
seguinte em caso de erro. Pode ser Util quando tenhamos de apagar um registo de uma
tabela utilizando o ADO.

14 Também designado em portugués de tratamento de erros.

Para além desta, existe ainda a on error goto 0, que obriga 0 access a mostrar o didlogo
gue vimos nho inicio do capitulo. Portanto j& vimos como detectar e tratar o erro. Falta
apenas vermos como identificar o erro!

O objecto Err

Quando acontece um erro, 0 Access procede a0 armazenamento desse erro numa
variavel designada de Err. Pode-se mesmo afirmar que o Err contém o erro mais recente
detectado pelo Access. O objecto Err apresenta vérias propriedades, das quais se
destacam as seguintes:

Description: descri¢do do erro ocorrido;

Number: nimero do erro ocorrido;

Este objecto também apresenta alguns métodos.
Clear: permite “limpar” o ultimo erro
Raise: permite criar um erro (pode ser Util no caso de querermos construir os
NOSSO préprios erros).

Para mais informacfes sobre estes topicos deve ser consultada a ajuda on-line do
Access.

Capitulo 5

A aplicacdo Sub-MovieCentral

A aplicagdo Sub-MovieCentral € um projecto do autor deste livro que foi adaptado para
Microsoft Access. O objectivo desta aplicacdo € permitir armazenar os dados relativos
aos filmes que eventualmente um utilizador possa possuir (ficheiro code.mdb). No caso
desta aplicacdo, foram apresentados os seguintes requisitos.
- manter uma lista actualizada de filmes;
deve ser possivel proceder a operacGes de manutencdo da base de dados:
adicionar, modificar e eiminar registos;
deve ser possivel manter véarios dados relacionados com os filmes, dos quais se
destacam os seguintes:
0 nome actores;
0 nomeredizadores;
o nome do filme;
o link paraapagina oficial do filme.

Assim, e apos efectuado o necessario processo de obtencdo de requisitos, chegouse ao
seguinte modelo relacional:

Marne
FirstMarme Year
LastMame Homepage
Mationality

1
IDescriptiDn

Esta aplicacdo apresenta varios exemplos relacionados com aspectos que podem ser
utilizados no access:
- barras de menus,
barras de ferramentas;
macros,
panés,
splash screens;
codigo VBA;
S < (o
O cddigo referente a este programa encontra-se no ficheiro code.mdb. A figura seguinte
ilustra o aspecto da aplicacéo:

Filmes |Fessuas | Papeis |

B MainForm : Form

Titulo Ang Homepage
(Aot Ll 2001 hitp:/fgo.movies. comcovote
Adicionar Filme ml Modificar Filme g, Remover Filrme Hel
Record: H|4|| 1 P|H|H9| of 1

A aplicacdo Sub-Movie Central foi construida utilizando um formulério principal, no
qual se colocou tab control. Este tab control possui trés tabs ou paginas, contendo cada
um deles um formulario. Apenas o formulério Filmes impede a inser¢céo/modificacéo
dos filmes apresentados (0s outros formulérios permitem que estas operacdes sejam
realizadas directamente.

Todos os botbes apresentados possiem codigo VBA associado a eles. Ja agora, refira
gue para construir estes botdes com esta apresentacdo (texto + imagem) foi necessario
utilizar um artificio, pois 0 access ndo permite a directa constru¢cdo de um botdo mm
texto e imagem; neste caso, colocouse no formulério uma caixa de texto + uma imagem
+ um bot&o (com estilo transparente) por cima dos elementos anteriores.

A aplicacao apresenta um splash screen, que € mostrado ao abrir o formulario principal
e que se auto-destroi quando alguém clica sobre ele (ou carrega numa tecla) ou quando
passam 3 segundos desde 0 seu inicio. No caso da primeira opcéo, bastou colocar
codigo no evento onclick (onkeydown). Para que o formuléario se autodestrua ao fim de
3 segundos, tivemos de instruir o formulario para chamar uma funcdo ao fim desse
tempo. Paratal utilizou-se um timer, mais propriamente a propriedade Timerinterval do
formulario (ver evento onload do mesmo formulario).

ﬂ

Voltando ao formulario principal, temos de referir que o evento de click num formulario
foi tratado em todos os formularios que se encontram nas tabs do formulario principal.
Cada um destes formulérios contém uma varidvel que, em cada instante, possui a
posicdo seleccionada dentro do formulério (uma vez que todos os formularios
apresentam um conjunto de registos — recordset — e um recordselector — que guarda a
posicdo actual nessa lista de registos — entdo basta saber qual a posicdo do
recordselector, e depois obter o ID do elemento que se encontra nessa posi¢ao; 0 Unico
pormenor digno de destaque é o recordset associado ao formulario (pode ser obtido
através da propriedade recordset): € um recordset do tipo DAO e n&o do tipo ADO — por
isso é que foi necessério acrescentar uma referéncia ao DAO).

Chama-se também a atencéo para o facto de todos os formulérios terem sido alterados
(modificaram-se vérias propriedades de forma a obter o resultado pretendido).
Construiram-se vérias barras de ferramentas, uma para cada sub-formul&rio (contido em
cada uma das paginas do tab control). Cada uma destas barras foi associada a um
formulario e recorreuse a VBA para processar o evento onchange do tab control, pois
em cada instante s deveria estar presente a barra de ferramentas associada ao
formulario que esta seleccionado (e tal so € possivel utilizando codigo VBA ou entdo
macros; neste caso optouse por utilizar codigo VBA. Quer as barras de ferramentas,
guer a barra de menus recorrem a macros para executar as acgdes. Algumas macros
servem apenas para juntar as op¢oes do menu ao cddigo VBA correspondente (ex.: tabl,
tab2, etc, etc). As restantes executam as acgdes contidas nas macros
(total_movies preview, etc). Para terminar os aspectos relacionados com as macros,
refirase ainda que quando queremos executar codigo VBA (que esta contido num
modulo) através de uma macro temos de colocar esse codigo numa fungdo (e nunca
num procedimento).

Esta aplicacdo pretende apenas demonstrar como é que se pode construir (de umaforma
simples) uma base de dados utilizando o Access. Claro que ficaram varios aspectos por
implementar, como por exemplo a construcdo de um relatério associado ao formulario
Add_Movies que trata da adigdo/alteracdo dos dados de um filme. Apesar destas faltas,
pensa-se que a aplicagéo ilustra de forma significativa algumas das capacidades do
access.

